Electricity, Sound, Light and Optics
PHY 132 Section ___

Name:
Email:
Phone:
Office:
Office Hours:
Department: Department of Physics and Astronomy
Class meeting time and place:

Course Description:
Electricity, Sound, Light and Optics (PHYS 1302) - electrical and magnetic phenomena, waves, sound, light, optics and radioactive decay. Lecture and laboratory grades are computed into one grade and the same grade is recorded for both lecture and lab. Prerequisite: PHY 131. Co-requisite: PHY 132L.

Program Learning Outcomes:
This is a general education core curriculum course and no specific program learning outcomes for this major are addressed in this course.

General Education Core Curriculum Objectives/Outcomes:
Critical Thinking: to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information, (CO 1)
Communication Skills: to include effective development, interpretation and expression of ideas through written, oral and visual communication, (CO 2)
Empirical and Quantitative Skills: to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions, (CO 3)
Teamwork: to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal, (CO 4)

Student Learning Outcomes:
By the end of the course, successful students will be able to:
1. Solve problems using principles derived from Maxwell’s Equations (SLO 1)
2. Analyze DC and AC circuits (SLO 2)
3. Demonstrate an understanding of fundamental wave motion as applied to mechanical and electrical waves (SLO 3)
4. Solve problems involving geometrical and physical optics (SLO 4)
5. Demonstrate skills developed in critical thinking, communication (written and visual), empirical and quantitative analysis, and teamwork. (SLO 5. Includes COs 1, 2, 3, 4)

Text and Materials:
College Physics 9th Edition by Serway/Faughn/Vuille
PHY 132 Lab Manual (produced by the Department of Physics and Astronomy and sold only in local bookstores)
Course Requirements:

- Students are required to study the following chapters from the course text: 29, 13-14 (Exam 1), 15-18 (Exam 2), 19-21 (Exam 3), 22-25 (Final Exam, comprehensive).
- Students will complete 12 laboratory exercises in the co-requisite lab and take a final exam over them at the end of the semester.
- Homework assignments (math oriented problems that involve learned physics principles) will be given to illustrate the principles covered in lecture. The assignments will be found on the WEB at http://webassign.net. They are due after the completion of the lectures on each chapter and involve approximately ten problems per chapter.
- There will be four major tests including the final. Students should become familiar with the policies on cheating and plagiarism.

The DC Circuits Project

This project is a specially designed experiment in the co-requisite lab that will allow students to demonstrate their mastery of critical thinking skills, communication skills, empirical and quantitative skills, and teamwork skills. It will involve measuring voltages and currents in DC circuits, obtaining results, and comparing them to theoretical results found using Ohm’s law. Available equipment will include multimeters, resistors, breadboards, and DC power supplies. Unlike other experiments performed during the semester, students will (1) design part of this experiment and will (2) be given two weeks to submit a formal, detailed write-up of the experiment. They will make use of word documents and spreadsheets to complete the project. Prior to this project students will be doing experiments in the lab as members of teams of no less than three students and no more than five. They will have experienced teamwork practice for at least 1-4 weeks prior to this project. These earlier experiments will allow students to also hone their skills in critical thinking, communication, and empirical and quantitative analyses. The DC Circuits Project will allow students to demonstrate their critical thinking skills through the design of a simple experiment (inquiry) to verify Ohm’s law, through the collection of relevant data, and through the drawing of conclusions (evaluation and synthesis) from the results. They will do this during their regular scheduled lab time which is two hours and fifty minutes in length. The formal lab write-up associated with this project will require each student to determine his/her own results and draw his/her own conclusions (written communications) based on data tables and graphs (visual communications) produced in the exercise. Students’ empirical and quantitative skills will be demonstrated by accuracy of measurements, manipulation and analysis of numerical data, needed calculations, error analyses and informed conclusions. This project involves an experiment where successful teamwork is required for students to set-up and conduct the experiment. Each team member must be willing to consider other’s points of view and to work effectively with other members of the team to develop a proper experimental procedure to accomplish their goal. Data will be collected as a team. Each team member must complete the take-home part of this project independently of his/her teammates.
Gradning Policy:
Each student’s grade is based on a 100 percent scale. Each lecture exam including the final is 15% of the student’s grade. The lab experiment average is 12.5% of the overall grade. (25% of this percentage will come from The DC Circuits Project.) The lab final is 12.5% of the overall grade. Homework is 15% over the overall grade. (For each student, lecture and lab scores will be combined to determine an overall grade in PHY 132. Each student will then receive this overall grade for both lecture and lab.) The grading scale is

90 -100 – A
80 - 89 – B
70 - 79 – C
60 - 69 – D
0 - 59 – F

Attendance Policy:
If you are going to miss class for a university excused absence you should notify the instructor in advance. It is your responsibility to make arrangements to make up any missed work. If you are sick it is your responsibility to abide by university guidelines in dealing with your absence. If you have four or more unexcused absences your final grade will be lowered one letter grade. You must provide appropriate written documentation of your absence within one week of the absence for it to be considered excused.

Academic Integrity (A-9.1)
Academic integrity is a responsibility of all university faculty and students. Faculty members promote academic integrity in multiple ways including instruction on the components of academic honesty, as well as abiding by university policy on penalties for cheating and plagiarism.

Definition of Academic Dishonesty
Academic dishonesty includes both cheating and plagiarism. Cheating includes but is not limited to (1) using or attempting to use unauthorized materials to aid in achieving a better grade on a component of a class; (2) the falsification or invention of any information, including citations, on an assigned exercise; and/or (3) helping or attempting to help another in an act of cheating or plagiarism. Plagiarism is presenting the words or ideas of another person as if they were your own. Examples of plagiarism are (1) submitting an assignment as if it were one's own work when, in fact, it is at least partly the work of another; (2) submitting a work that has been purchased or otherwise obtained from an Internet source or another source; and (3) incorporating the words or ideas of an author into one's paper without giving the author due credit.

Please read the complete policy at http://www.sfasu.edu/policies/academic_integrity.asp

Withheld Grades Semester Grades Policy (A-54)
Ordinarily, at the discretion of the instructor of record and with the approval of the academic chair/director, a grade of WH will be assigned only if the student cannot complete the course work because of unavoidable circumstances. Students must complete the work within one calendar year from the end of the semester in which they receive a WH, or the grade automatically becomes an F. If students register for the same course in future terms the WH will automatically become an F and will be counted as a repeated course for the purpose of computing the grade point average.
Course Calendar (Lecture):

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics Covered</th>
</tr>
</thead>
</table>
| Week 1| Course Introduction
Lecture and assigned reading on critical thinking in physics (CO 1)
Nuclear Physics
Instructor led discussion on critical thinking (CO 1) |
| Week 2| Homework problems due
Vibrations and Waves |
| Week 3| Homework problems due (SLO 3)
Sound
Lecture and instructor led discussion on written and visual communications (CO 2) |
| Week 4| Exam 1 (SLO 3)
Homework problems due
Electric Forces and Electric Fields |
| Week 5| Electric Forces and Electric Fields
Homework problems due
Electrical Energy and Capacitance |
| Week 6| Lecture and assigned reading on teamwork (CO 4)
Homework problems due
Current and Resistance
Instructor led discussion on teamwork (CO 4) |
| Week 7| Homework problems due (SLO 2)
Direct Current Circuits |
| Week 8| Exam 2 (SLO 2)
Homework problems due (SLO 2)
Magnetism |
| Week 9| The DC Circuits Project begins in lab (SLO 5 and COs 1, 2, 3, 4)
Magnetism
Induced Voltages and Inductance |
| Week 10| Induced Voltages and Inductance
Homework problems due |
| Week 11| Homework problems due (SLO 1)
Alternating Current Circuits and Electromagnetic Waves |
| Week 12| Exam 3 (SLO 2)
Homework problems due (SLO 2, 3)
Reflection and Refraction of Light |
| Week 13| Reflection and Refraction of Light
Mirrors and Lenses
Homework problems due (SLO 1, 4) |
| Week 14| Mirrors and Lenses
Wave Optics
Homework problems due (SLO 1, 4) |
| Week 15| Homework problems due (SLO 1, 4)
Wave Optics
Optical Instruments |
| Week 16| Final Exam Week – Exam 4 (SLOs 1-4) |
Course Calendar (Laboratory):

<table>
<thead>
<tr>
<th>Lab</th>
<th>Week of</th>
<th>Lab Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan. 28th</td>
<td>Simulation of Radioactivity (CO 3)*</td>
</tr>
<tr>
<td>2</td>
<td>Feb. 4th</td>
<td>Radiation</td>
</tr>
<tr>
<td>3</td>
<td>Feb. 11th</td>
<td>Standing Waves</td>
</tr>
<tr>
<td>4</td>
<td>Feb. 18th</td>
<td>Organ Pipe</td>
</tr>
<tr>
<td>5</td>
<td>Feb. 25th</td>
<td>Oscilloscope</td>
</tr>
<tr>
<td>6</td>
<td>Mar. 4th</td>
<td>The DC Circuits Project (COs 1-4)</td>
</tr>
<tr>
<td>7</td>
<td>Mar. 18th</td>
<td>Series and Parallel Circuits</td>
</tr>
<tr>
<td>8</td>
<td>Mar. 25th</td>
<td>Magnetic Fields</td>
</tr>
<tr>
<td>9</td>
<td>Apr. 8th</td>
<td>Ray Box</td>
</tr>
<tr>
<td>10</td>
<td>Apr. 15th</td>
<td>Lenses</td>
</tr>
<tr>
<td>11</td>
<td>Apr. 22nd</td>
<td>Telescope and Microscope</td>
</tr>
<tr>
<td>12</td>
<td>Apr. 22nd</td>
<td>Diffraction Grating</td>
</tr>
<tr>
<td>--</td>
<td>Apr. 29th</td>
<td>Lab Final Exam in Room 317</td>
</tr>
</tbody>
</table>

*Instruction on how to correctly collect and analyze scientific data will begin here and will continue throughout the laboratory experience. By the time students get to The DC Circuits Project they will have adequate development of empirical and quantitative skills to satisfactorily complete the project.

**This experiment is more comprehensive than the others and will count as 25% of the lab experiment grade. It is designed to allow students to demonstrate their skills in critical thinking, communication, empirical and quantitative analyses, and teamwork. Students will have two weeks to complete a formal report using word processors and spreadsheets.

Students with Disabilities

To obtain disability related accommodations, alternate formats and/or auxiliary aids, students with disabilities must contact the Office of Disability Services (ODS), Human Services Building, and Room 325, 468-3004 / 468-1004 (TDD) as early as possible in the semester. Once verified, ODS will notify the course instructor and outline the accommodation and/or auxiliary aids to be provided. Failure to request services in a timely manner may delay your accommodations. For additional information, go to http://www.sfasu.edu/disabilityservices/.