Storage Guidelines

- Follow the storage limit and time frame guidelines for satellite accumulation areas and central storage areas as stated above.
- Wastes must be in containers made of materials compatible with the contents.
- The best containers for hazardous waste are the ones the original materials came in. If the original container cannot be used then a compatible container in good condition is acceptable. Containers such as 5-gallon plastic jugs and 4-liter glass bottles are acceptable if the container and any residue left inside are compatible with new waste material.
- Larger containers are better if they can be filled within a reasonable time and does not present a storage hazard at your location. Please fill the containers to within 1 or 2 inches from the top before requesting disposal. This will aid the University in reducing waste, cutting costs and also speeding up removal of wastes from your location.
- All containers must have a secure, tight fitting, non-leaking lid. Containers with cracked or leaking lids sealed with parafilm are a deviation from storage requirements and will not be picked up.
- Lids must be secure on containers at all times unless waste is physically being added to the container.
- UNDER NO CIRCUMSTANCES SHOULD A FUNNEL EVER BE LEFT IN AN UNATTENDED CONTAINER. Funnels in containers, improper labeling and waste containers with no lids are the three most common laboratory waste violations and will lead to costly fines.

Examples of Improper Container Capping

- Hazardous waste should never be stored in or around drains or sinks.
- For Satellite Accumulation Areas, waste must be stored in a secure place, near the point of generation and always under control of trained personnel.
- Waste must never be left in a hallway or any other area where it could endanger personnel, facility safety or the environment. This area should be kept clean and inspected for spills on a daily basis.
• The central storage areas must be secured to prevent inadvertent access; that is, doors to waste areas should be kept locked when unattended.
• Wastes must be compatible with other wastes and hazardous materials in the area.
• When wastes are separated properly, disposal options remain clearer and more cost effective.
• Never mix incompatible wastes or other materials in the same container or place wastes in an unwashed container that previously held an incompatible waste or material. However, if separation is not practical, collect waste in compatible containers and try to keep it segregated into the following categories:

1. Miscellaneous solids, e.g., grossly contaminated gloves, rags or towels, and other grossly contaminated lab equipment should be collected separately from liquid wastes.
2. Halogenated solvents, e.g., methylene chloride, chloroform, carbon tetrachloride.
3. **Note:** Disposal of non-halogenated solvents contaminated with halogens costs 4-5 times as much as non-halogenated solvents.
4. Non-halogenated solvents, e.g., xylene, toluene, alcohols.
5. Waste oil must be kept as uncontaminated as possible in order to be recycled. You should keep oils separate from other chemicals, particularly solvents, pesticides, and PCB’s.
6. Acids.
8. Metal-bearing waste whether dry, flammable, corrosive or other. Specific metals of concern are arsenic, barium, cadmium, chromium, lead, mercury, nickel, selenium, silver, and thallium.
9. Accumulate waste that is both flammable and corrosive separately from waste that is either flammable or corrosive.
10. Special wastes, e.g., cyanide, sulfide, pesticides, oxidizers, organic acids, explosives and peroxides, should be collected individually whenever possible.
11. Mercury and mercury containing compounds. All mixtures containing mercury in any form must be disposed of as mercury contaminated waste.