CSC 102 - COMPUTER SCIENCE PRINCIPLES

CREDIT HOURS: 3

PREREQUISITES: Eligibility for enrollment in college algebra.

GRADE REMINDER: Must have a C or better in each prerequisite course.

CATALOG DESCRIPTION

Fundamental concepts of computer systems, systems software, and an overview of computer science issues. Problem solving and program development using a high-level programming language.

PURPOSE OF COURSE

To introduce students to the basic concepts of computer systems, to fundamental systems software, to a disciplined approach to problem solving, to procedural program development in a high-level language, to software engineering principles, to ethics in computing, and to computer science careers.

EDUCATIONAL OBJECTIVES

Upon successful completion of the course, students should be able to:

- 1. Demonstrate a fundamental knowledge of computer organization, computer operation, and the information hierarchy (binary numbers and character representations).
- 2. Apply the software life cycle to specific problems in such disciplines as business, mathematics, science, and engineering.
- 3. Perform problem analysis and program design using tools such as pseudocode, structure charts, and flowcharts.
- 4. Apply the features of a modern widely-used programming language in implementing solutions to well described problems. These features include declaration of data types and fundamental data structures, application of control structures (sequence, selection, repetition), utilization of I/O and file handling, development of structured program organization (subprograms with parameters), and inclusion of documentation.
- 5. Use operating systems tools (command system, editor, compiler, linker and loader) in single-user and/or multi-user environments.
- 6. Create appropriate test data and apply debugging and testing strategies.
- 7. Use E-mail, networks, and the Internet.
- 8. Demonstrate a knowledge of fundamental computing terminology.
- 9. Demonstrate an understanding of the role of computing in society.

CONTENT	Hours
Introduction to computer science	1
Basic Concepts of Computer Systems	3

Department of Computer Science Stephen F. Austin State University	CSC 102 Syllabus, l 08/15	Page 2 5/2016
Systems Software Operating systems, editors, compilers Program linking, loading, and execution The INTERNET and electronic mail		6
Problem Solving ConceptsStrategies for problem solving Algorithm representation		9
Program Development	iter s and operations,	18
Software Engineering Principles Life Cycle and Development Process Modular design and communication Documentation		3
Ethics and Careers		2
Exams		3
	TOTAL	45
REFERENCES		

Horstmann, C., <u>Big Java Late Objects</u>, Wiley, 2013.

Liang, Y.D., <u>Introduction to Java Programming</u>, Prentice Hall, 9th Ed., 2013.

Malik, D.S., <u>Java Programming from Problem Analysis to Program Design</u>, Course Technology, 5th Ed., 2012.