CSC 445 - COMPUTER GRAPHICS

CREDIT HOURS: 3
PREREQUISITES: CSC 323 or 341 or 342; and MTH 133
GRADE REMINDER: Must have a grade of C or better in each prerequisite course.

CATALOG DESCRIPTION

Overview of the hardware, software and techniques used in computer graphics. Graphics primitives, two-dimensional transformations, painting, windowing and clipping. Three-dimensional graphics including hidden lines and surfaces, lighting, texturing, and shading.

PURPOSE OF COURSE

Develop knowledge of terms and concepts, skills in modeling and rendering using a mid-level API (OpenGL), and visual system design and implementation.

EDUCATIONAL OBJECTIVES

The goal of this course is to have students develop a small interactive graphical system based on student interests or minor area of study. The system is to be designed and implemented using software engineering methods, algorithm and data structure techniques, hardware interface and operating system support, graphical library routines, and program performance considerations. Student progress will be evaluated through the successful completion of progressively more advanced graphics laboratory problems, performance on activities, and success of the term project. Specific skills include:

1. Demonstrate knowledge of design and implementation techniques utilizing complex data structures and algorithms for visual based interactive systems including scene graphs.

2. Develop skills in interface design including modeling, input device control, and screen layout (color, composition, presentation).

3. Explore Scene graphs and WEB-based graphics.

4. Explore graphics techniques including drawing, filling, windowing, clipping, curves, coordinate systems, and transformations in two dimensions.

5. Enhance graphics techniques including drawing, filling, windowing, clipping, curves, coordinate systems, transformations, projections, and hidden line and hidden surface techniques for three dimensions.

7. Enhance visualization skills by exploring texturing, shadowing, ray tracing, and radiosity techniques.

COURSE CALENDAR

This course meets for a minimum of 37.5 lecture contact hours during the semester, including the final exam. Students have significant weekly reading assignments. Students are expected to complete a major project, prepare a class presentation on the project, and 2-3 periodic exams in addition to the final exam. Students are expected to prepare for any class assignments or quizzes over the material covered in class or in the reading material. Successful completion of these activities requires at a minimum six additional hours of outside of classroom work each week.

CONTENT

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Overview of Computer Graphics .. 2
 Objectives
 Basic principles

Introduction to Computer Graphics Hardware .. 1
 Display devices
 Input/output devices

Design .. 4
 Story Composition
 Art Design
 Games

OpenGL .. 6

Design for visual systems (art, story, systems) ... 3

Scene graphs and WEB-base graphics .. 3

Graphics Systems and Primitives .. 2
 Library/system support for graphics
 Point plotting
 Straight line drawing
 Curved line drawing

Two-Dimensional Graphics .. 6
 Mathematical background and Coordinate System
 Transformations (Translation, Scaling, Rotation)
 Animation
 Approaches (segments vs. direct)
 Filling (Painting)
 Windowing
 Clipping

Three-Dimensional Graphics .. 12
 Coordinate System
 Plotting points, lines, and surfaces
 Projections
 Perspective views
 Transformations
 Hidden lines and surfaces
 Shading and texture
 Ray tracing and radiosity

Presentations .. 6

TOTAL 45

REFERENCES

