N

Abstract or Introduction

The calculation of the molar mass of any given compound is
a very simple process, though it can be somewhat repetitive
and for complex structures it may take some amount of time.
Furthermore, the uncertainty values are easy to calculate, but
they are difficult to easily get ahold of reliably to certain
extents of significant figures for some elements. It may also
be somewhat difficult for students new to chemistry to
calculate molar mass on the fly. As such a simple program
was written to automatically calculate the molar mass and
uncertainty in the measurement thereof for the user. Such a
program could also be used as a simple teaching tool to
encourage students to test their calculations against those of
the code.

Overview of Process
The process by which the program functions is very

streamlined. The program starts by asking the user to input the
various types of elements present in the compound. It then
asks the user for the number of atoms present for each
element. Then after a quick calculation it outputs the results,
alongside an uncertainty value pulled from the J. Phys.Chem.
Ref.Data 2007, 36, 485. After outputting the molar mass and
the uncertainty, the program asks the user if they would like to
do another calculation, looping if they answer yes and ending
the program if they answer no.

Additional Notes

The program was written with the intent to be capable of
being used with any element on the periodic table, as well as
deuterium. However, some elements such as those of noble
gasses, those that are manmade or radioactive, and those that
have an unknown uncertainty may not be suitable for
calculations. Due to them not being likely to appear in a
chemical formula. If they do appear the program spots this
and gives a friendly reminder to check spelling in case it is a
mistake. The program is also written to accept any capitalized
or uncapitalized names of elements, as well as capitalized and
uncapitalized elemental symbols such as Br. Shown below
(Figure 1) is an example of code being run for chromium(III)
oxide. In this scenario however, the user misspells Cr for
chromium as Cf, inadvertently using californium. In the
example the program recognizes this and points it out in case
it is a mistake. The user could then spot this and run the
calculation again, this time being more careful with spelling.

——-JGRASP exec: java KG_MolarMassCale

(XA

Input the number of Oxygen atoms present: 3
Input the number of Californium atoms present:
The molar mass in g/mol (grams per mole) of the geseribed nolecular formula is: 298.9962
The uncertainty of that Beasurcment in g/mole isi +/- 9
varning! You just input either 2 Fagioactiverrare/noote as
i2r & element with an unkawn uncertainty, It this i3 3 Nslake- please check your spelling.
"Would you like o' permm another ca lculation? Enter *
Tnank ¥ou for using the Molar Mess Colculator!
GRASP: operation complete

Figure 1. Code Execution Example

*

State each element present in the chemical forsula, for H20 you would say ‘Hydrogen, Dxygen': Cf Oxygen

Kadin Green and Eddie Ironsmith (Faculty Advisor)

College of Science and Mathematics

Stephen F. Austin State University, Nacogdoches, Texas

Methodology

The code itself uses very simple concepts that a beginner
starting their introductory course to computer science principles
could implement after a month or two. Although there are a few
examples of more "complex" code, meaning code that would
require maybe three or four months of the same introductory
class. The code starts out by creating set values for the molar
mass of each element, the uncertainty of each element, and a
counter for the amount of each element. Then after prompting

the user to input the types of elements present, the code detects

which elements are present and uses that information to ask the

user how many atoms of each element there are in the
molecular formula. The program then sets the counters equal to
the number inputted for each element. A simple calculation is

then done to find the molar mass of the compound by
multiplying the number of elements times their respective molar
masses before adding them all together. The program then

prints out the results and asks if the user would like to do
another. The coding started out simple, attempting to understand
the basics of how this could be accomplished by creating a code
that would calculate molar mass for a compound using elements
from hydrogen to oxygen, this code can be seen in Figure 2. After
the initial test and some thinking, the code was refined, expanded,
improved, and changed to include uncertainty values as well as
molar mass, this code can be seen through the QR code in Figure
3. Finally, after much more expansion of the "final" product was
made in the form of the current code, though further
optimizations are very possible. This code can be seen through the

QR code in Figure 4.

Figure 3: First Code Figure 3: Second

QR code Code QR code QR Code

Figure 5: Small section of code 1

L) (it

5) + (He) * (el

System out printn("The uncertainy of that measurement n g/moleis:+/-* + uncertainy)

Figure 6: Small section of code 2

Bl

Sty B Avs iy S

Discussion

This program was written in a limited time frame with only a
basic understanding of the introductory sections of coding for
Java. Given more time and even just a novice-level understanding
of coding, much more could be completed. Current things that
can be improved on in the program include changing the way the
code recognizes elements to allow one to input a chemical
formula directly. Such as Sr(OH)2, this could allow a user to skip
out having to count and state the number of atoms present for
each element. This would make calculating molar mass for
smaller compounds more efficient, though for incredibly large
compounds in which a chemical formula is not given directly,
and rather a structure is given, the current form may be more
applicable. Applying this would also allow one to cut out a large
portion of what would be thereafter unnecessary code. Other
things that could be done include condensing the large list of
doubles for uncertainties, molar masses, and element symbols.
The program could be used as a teaching tool as is by giving a
student pre-determined formulas, telling them to calculate the
molar mass for them, then checking if their answer is within
perhaps 1% of the actual value. However, it could be further
streamlined if made specifically for this function, by having the
program randomly generate a number, use that number to choose
from a pre-made list of formulas, ask the user to calculate the
molar mass and input their answer, and then provide the correct
answer and any percent difference. The source currently being
used to draw molar masses of elements and uncertainties of
elements is the same source a current textbook for a quantitative
analysis course at SFA uses, though a more recent source than
2007 may be more accurate.

e

locbmUncaiany) + ()" (nckaUnceranty) + (Co)-

ehtncatany) + (€9

S i F

e i oy’ e - RN

e Lo o B} o R B oo

s o Vi

) (aconUncarany <+ ()" ~a) RUS

Figure 4: Third Code

iGumUncerainty)

1
By ) 1) h 01 (e 1 01 (30 | () 1 (e 1) ) =) (et
11 (7)o ] 05) €921 01 @
2011{16)> 0 (% 18901140 01

11 (7g)> 011 05) e

20RO 201 o g

Figure 7: Small section of code 3

Conclusion

In conclusion, where this specific code may have ample room for
improvement, it serves as a good basis and proof of concept for
calculators to find molar masses and uncertainties quicker, as well as

to potentially be used as a learning tool.




