Put Your Tables Away

Robert K. Henderson
February 21, 2020

Suppose you have a sample of size 10, and desire to know whether or not the mean of the population from which the sample was obtained is greater than zero.
Most likely, you would calculate a t -statistic $\mathrm{t}=\frac{\bar{X}}{\frac{S}{\sqrt{n}}}$, where
$\bar{X}=$ sample mean,$S=$ sample standard deviation, $n=$ the sample size $=10$ in this case .
Now, suppose you do this, and you get $t=3$. You realize this is likely a statistically significant result, but the pesky journal editor requires a p-value.

Hence, it becomes necessary to calculate the probability a student's t random variable with 9 degrees of freedom is greater than equal to $\mathrm{t}=3$, i.e., $\mathrm{P}\left[\mathrm{t} \geq 3 \mid \mathrm{t} \sim \mathrm{t}_{(9)}\right]$.

In many stat classes, students are asked to do this using a student's t table, such as that at right.

To get $\mathrm{P}\left[\mathrm{t} \geq 3 \mid \mathrm{t} \sim \mathrm{t}_{(9)}\right]$, the student has to find the value " 3 " in the row labeled " 9 " in the "df" column. It is not there, the values 2.821 and 3.250 bounding it are.

The value " 3 " is $\sim 41.725 \%$ of the distance between these bounds, so to obtain the desired p -value, it is necessary to find the value $\sim 41.725 \%$ of the distance between 0.01 \& 0.005 , which is ~ 0.0079.
t Table

One could use an Excel utility designed to calculate such probabilities.

Utility can handle two percentiles as well. For example, can find $\mathrm{P}\left[-2<\mathrm{t}<2 \mid \mathrm{t} \sim \mathrm{t}_{(22)}\right]$

Output Results
Area Data Value Probability Below -2 0.0290 Above 2 0.0290 Between $-2 \& 2$ 0.9420

Desired result $=0.9420$

Also, can find percentiles given desired probabilities. For example, can find t_{0} for $\mathrm{P}\left[\mathrm{t}<\mathrm{t}_{0} \mid \mathrm{t} \mathrm{t}_{(15)}\right]=0.95$

Output Results		
Area	Data Value	Probability
Below	1.753	0.9500
Above	1.753	0.0500
Between	$1.753 \& 1.753$	0.0000

How about finding a binomial probability?

Might be necessary when using data to test if a population proportion is smaller or larger than some reference value?

Suppose we had results from an exit poll of 20 randomly selected people voting in the March primary here in Nacogdoches where the respondents were asked who they intended to vote for for president in November.

Suppose further that 14 of the 20 indicated their intent to vote for Donald Trump. Does this result provide sufficient evidence to indicate President Trump is likely to carry Nacogdoches in November?

To answer this, we would need to evaluate the probability of obtaining this observation or one more extreme if the true proportion of Trump voters is ≤ 0.5. This probability can be estimated using the binomial probabilitiode as
P[≥ 14 Trump voters of $20 \mid \%$ of all Nacogdoches Trump voters is $\leq 50 \%$]
This requires the summation of 7 binomial probabilities:

$$
P_{i}=\binom{20}{i} 0.5^{20}, i=14, \ldots, 20
$$

Or, using a binomial table at right adding the values
$.037+.015+.005+.001+.000+.000+.000=.058$

Table 4 continued

OR ...

One could use an Excel utility designed to calculate such probabilities.

Often, Binomial Tables are difficult to find for $\mathrm{n}>20$; however, most real polls have well beyond $\mathrm{n}=20$ respondents. What if the primary exit poll obtained responses from 200 voters and 118 of them indicated they would vote for president Trump in November?

Now interested in P[118 Trump voters in 200 | \% of all Nacogdoches Trump voters $\leq 50 \%$] $=0.006565$

Binomial Utility can also produce 100(1- α)\% exact Binomial Confidence Intervals for a population proportion.

95\% Confidence intervals for the proportion of all Nacogdoches Trump voters based on the two polls would be

So the potential of a Normal approximation for these confidence intervals suggests how the
P[≥ 118 Trump voters in $200 \mid \%$ of all Nacogdoches Trump voters $\leq 50 \%$]
would need to be estimated WITHOUT a Binomial Utility \& No Binomial Table w/n=200

Step 1: Find Expected Count $=200 * 0.50=100$
Step 2: Find Standard Deviation of Count $=\sqrt{200 * 0.5 * 0.5}$

$$
\approx 7.07107
$$

Step 3: Calculate a Z-score for the Count:

$$
Z=\frac{118-100}{7.07107} \approx 2.546^{2.475}
$$

Step 4: Use a Standard Normal Table to Determine Desired Probability 50\%
Here, need to find the value 60% of the way between
$00554 \& .00539 .00676 \& .00657$. 006665
which is 00545
Note this approximation is not very good Approximately 17% < Actual $=.006565$.

Better with Continuity Correction
Approximately 1.5% > Actual $=.006565$.

z	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-0	. 50000	. 49601	. 49202	. 48803	. 48405	. 48006	. 47608	. 47210	. 46812	. 46414
-0.1	. 46017	. 45620	. 45224	. 44828	44433	. 44034	. 43640	. 43251	. 42858	. 42465
-0.2	. 42074	. 41683	. 41294	. 40905	. 40517	. 40129	. 39743	. 39358	. 38974	38591
-0.3	. 38209	. 37828	. 37448	. 37070	. 36693	. 36317	. 35942	. 35569	. 35197	. 34827
-0.4	. 34458	. 34090	. 33724	. 33360	. 32997	. 32636	. 32276	. 31918	. 31561	. 31207
-0.5	. 30854	. 30503	. 30153	. 29806	. 29460	. 29116	. 28774	. 28434	. 28096	. 27760
-0.6	. 27425	. 27093	. 26763	. 26435	. 26109	. 25785	. 25463	. 25143	. 24825	. 24510
-0.7	. 24196	. 23885	. 23576	. 23270	. 22965	. 22663	. 22363	. 22065	. 21770	. 21476
-0.8	. 21186	. 20897	. 20611	. 20327	. 20045	. 19766	. 19489	. 19215	. 18943	. 18673
-0.9	. 18406	. 18141	. 17879	. 17619	. 17361	. 17106	. 16853	. 16602	. 16354	. 16109
-1	. 15866	. 15625	. 15386	. 15151	. 14917	. 14686	. 14457	. 14231	. 14007	. 13786
-1.1	. 13567	. 13350	. 13136	. 12924	. 12714	. 12507	. 12302	. 12100	. 11900	. 11702
-1.2	. 11507	. 11314	. 11123	. 10935	. 10749	. 10565	. 10383	. 10204	. 10027	. 09853
-1.3	. 09680	. 09510	. 09342	. 09176	. 09012	. 08851	. 08692	. 08534	. 08379	. 08226
-1.4	. 08076	. 07927	. 07780	. 07636	. 07493	. 07353	. 07215	. 07078	. 06944	. 06811
-1.5	. 06681	. 06552	. 06426	. 06301	. 06178	. 06057	. 05938	. 05821	. 05705	. 05592
-1.6	. 05480	. 05370	. 05262	. 05155	. 05050	. 04947	. 04846	. 04746	. 04648	. 04551
-1.7	. 04457	. 04363	. 04272	. 04182	. 04093	. 04006	. 03920	. 03836	. 03754	. 03673
-1.8	. 03593	. 03515	. 03438	. 03362	. 03288	. 03216	. 03144	. 03074	. 03005	. 02938
-1.9	. 02872	. 02807	. 02743	. 02680	. 02619	. 02559	. 02500	. 02442	. 02385	. 02330
-2	. 02275	. 02222	. 02169	. 02118	. 02068	. 02018	. 01970	. 01923	. 01876	. 01831
-2.1	. 01786	. 01743	. 01700	. 01659	. 01618	. 01578	. 01539	. 01500	. 01463	. 01426
-2.2	. 01390	. 01355	. 01321	. 01287	. 01255	. 01222	. 01191	. 01160	. 01130	. 01101
-2.3	. 01072	. 01044	. 01017	. 00990	. 00964	. 00939	. 00914	. 00889	00866	. 00842
-2.4	. 00820	. 00798	. 00776	. 00755	O07425	-17	$\xrightarrow{ }$. 00676	. 00657	. 00639
-2.5	. 00681	. 0 Oou	.0050\%	-0esme	. 00554	. 00539	. 00523	. 00500	. 00494	. 00480
-2.6	. 00466	. 00453	. 00440	. 00427	. 00415	. 00402	. 00391	. 00379	. 00368	. 00357
-2.7	. 00347	. 00336	. 00326	. 00317	. 00307	. 00298	. 00289	. 00280	. 00272	. 00264
-2.8	. 00256	. 00248	. 00240	. 00233	. 00226	. 00219	. 00212	. 00205	. 00199	. 00193
-2.9	. 00187	. 00181	. 00175	. 00169	. 00164	. 00159	. 00154	. 00149	. 00144	. 00139
-3	. 00135	. 00131	. 00126	. 00122	. 00118	. 00114	. 00111	. 00107	. 00104	. 00100
-3.1	. 00097	. 00094	. 00090	. 00087	. 00084	. 00082	. 00079	. 00076	. 00074	. 00071
-3.2	. 00069	. 00066	. 00064	. 00062	. 00060	. 00058	. 00056	. 00054	. 00052	. 00050
-3.3	. 00048	. 00047	. 00045	. 00043	. 00042	. 00040	. 00039	. 00038	. 00036	. 00035
-3.4	. 00034	. 00032	. 00031	. 00030	. 00029	. 00028	. 00027	. 00026	. 00025	. 00024
-3.5	. 00023	. 00022	. 00022	. 00021	. 00020	. 00019	. 00019	. 00018	. 00017	. 00017
-3.6	. 00016	. 00015	. 00015	. 00014	. 00014	. 00013	. 00013	. 00012	. 00012	. 00011
-3.7	. 00011	. 00010	. 00010	. 00010	. 00009	. 00009	. 00008	. 00008	. 00008	. 00008
-3.8	. 00007	. 00007	. 00007	. 00006	. 00006	. 00006	. 00006	. 00005	. 00005	. 00005
-3.9	. 00005	. 00005	. 00004	. 00004	. 00004	. 00004	. 00004	. 00004	. 00003	. 00003
-4	. 00003	. 00003	. 00003	. 00003	. 00003	. 00003	. 00002	. 00002	. 00002	. 00002

However, with a suitable Normal Distribution Excel utility:
Standard Normal has Mean = 0 and Standard Deviation $=1$

Of course, with this utility, there is no need to even calculate the Z-score:
Approximate Count Distribution is Normal with Mean $=100$ and Standard Deviation $=7.07107$

Also, there is a Simple Regression Excel utility available:

Basic Worksheet Diagnostics Worksheet

Only input is ordered pairs of Predictor (X) and Response (Y) Starting in Row 2. Currently, can accommodate up to $\mathrm{n}=1000$ data pairs.

