Put Your Tables Away

Robert K. Henderson February 21, 2020 Suppose you have a sample of size 10, and desire to know whether or not the mean of the population from which the sample was obtained is greater than zero.

4 Table

Most likely, you would calculate a t-statistic t = $\frac{X}{\frac{S}{\sqrt{n}}}$, where

 \overline{X} = sample mean, S = sample standard deviation, n = the sample size = 10 in this case.

Now, suppose you do this, and you get t = 3. You realize this is likely a statistically significant result, but the pesky journal editor requires a p-value.

Hence, it becomes necessary to calculate the probability a student's t random variable with 9 degrees of freedom is greater than equal to t = 3, i.e., $P[t \ge 3 | t \sim t_{(9)}]$.

In many stat classes, students are asked to do this using a student's t table, such as that at right.

To get $P[t \ge 3 | t \sim t_{(9)}]$, the student has to find the value "3" in the row labeled "9" in the "df" column. It is not there, but the values 2.821 and 3.250 bounding it are.

The value "3" is ~41.725% of the distance between these bounds, so to obtain the desired p-value, it is necessary to find the value ~41.725% of the distance between 0.01 & 0.005, which is ~0.0079.

t Table											
cum. prob	t.50	t.75	t.80	t .85	t.90	t .95	t.975	t .99	t.995	t .999	t.9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2,000	0.055	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250		4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.790	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.602	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000 0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552 3.527	3.850
21 22	0.000	0.686 0.686	0.859 0.858	1.063 1.061	1.323 1.321	1.721 1.717	2.080 2.074	2.518 2.508	2.831 2.819	3.505	3.819 3.792
22	0.000	0.685	0.858	1.060	1.321	1.714	2.074	2.500	2.819	3.485	3.768
23	0.000	0.685	0.857	1.059	1.318	1.714	2.069	2.300	2.797	3.465	3.745
24	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.409	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300

OR ...

One could use an Excel utility designed to calculate such probabilities.

Utility can handle two percentiles as well. For example, can find P[-2 < t < 2 | t \sim t₍₂₂₎]

Also, can find percentiles given desired probabilities. For example, can find t_0 for P[t < t_0 | t ~ $t_{(15)}$] = 0.95

How about finding a binomial probability?

Might be necessary when using data to test if a population proportion is smaller or larger than some reference value?

Suppose we had results from an exit poll of 20 randomly selected people voting in the March primary here in Nacogdoches where the respondents were asked who they intended to vote for for president in November.

Suppose further that 14 of the 20 indicated their intent to vote for Donald Trump. Does this result provide sufficient evidence to indicate President Trump is likely to carry Nacogdoches in November?

To answer this, we would need to evaluate the probability of obtaining this observation or one more extreme if the true proportion of Trump voters is ≤ 0.5 . This probability can be estimated using the binomial probability model as

 $P[\ge 14 \text{ Trump voters of } 20] \% \text{ of all Nacogdoches Trump voters is } \le 50\%]$

This requires the summation of 7 binomial probabilities:

$$P_i = \binom{20}{i} 0.5^{20}, i = 14, \dots, 20$$

Or, using a binomial table at right adding the values .037 + .015 + .005 + .001 + .000 + .000 + .000 = .058

Table 4	Table 4 continued																				
			05	40	45	00	05	00	05	p		50		00	05	70	75	00	05	00	05
n	r	.01	.05	.10	.15	.20	.25	.30	.35	.40	.45	.50	.55	.60	.65	.70	.75	.80	.85	.90	.95
16	2	.010	.146	.275	.277	.211	.134	.073	.035	.015	006	.002	.001	.000	.000	.000	.000	.000	.000	.000	.000
10	3	.000	.036	.142	.229	.246	.208	.146	.089	.047	.022	.002	.003	.001	.000	.000	.000	.000	.000	.000	.000
	4	.000	.006	.051	.131	.200	.225	.204	.155	.101	.057	.028	.011	.004	.001	.000	.000	.000	.000	.000	.000
	5	.000	.001	.014	.056	.120	.180	.210	.201	.162	.112	.067	.034	.014	.005	.001	.000	.000	.000	.000	.000
	6	.000	.000	.003	.018	.055	.110	.165	.198	.198	.168	.122	.075	.039	.017	.006	.001	.000	.000	.000	.000
	7	.000	.000	.000	.005	.020	.052	101	.152	.189	.197	.175	.132	.084	.044	.019	.006	.001	.000	.000	.000
	8	.000	.000	.000	.001	.006	.022	.049	.092	.142	.181	.196	.181	.142	.092	.049	.020	.006	.001	.000	.000
	9	.000	.000	.000	.000	.001	.006	.019	.044	.084	.132	.175	.197	.189	.152	.101	.052	.020	.005	.000	.000
	10	.000	.000	.000	.000	000	.001	.006	.017	.039	.075	.122	.168	.198	.198	.165	.110	.055	.018	.003	.000
	11	.000	.000	.000	.000	.000	.000	.001	.005	.014	.034	.067	.112	.162	.201	.210	.180	.120	.056	.014	.001
	12	.000	.000	.000	.000	.000	.000	.000	.001	.004	.011	.028	.057	.101	.155	.204	.225	.200	.131	.051	.006
	13	.000	.000	.090	.000	.000	.000	.000	.000	.001	.003	.009	.022	.047	.089	.146	.208	.246	.229	.142	.036
	14	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.002	.006	.015	.035	.073	.134	.211	.277	.275	.146
	15	.000	900	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.003	.009	.023	.053	.113	.210	.329	.371
	16	.009	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.003	.010	.028	.074	.185	.440
20	0	.818	.358	.122	.039	.012	.003	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
20	1	.165	.356	.122	.039	.012	.003	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	2	.016	.189	.285	.229	.038	.021	.007	.002	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	3	.001	.060	.190	.243	.205	.134	.020	.032	.003	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	4	.000	.013	.090	.182	.218	.190	.130	.074	.035	.014	.005	.001	.000	.000	.000	.000	.000	.000	.000	.000
	5	.000	.002	.032	.102	.175	.202	.179	.127	.075	.036	.005	.005	.000	.000	.000	.000	.000	.000	.000	.000
	6	.000	.000	.009	.045	.109	.169	.192	.171	.124	.075	.037	.015	.005	.001	.000	.000	.000	.000	.000	.000
	7	.000	.000	.002	.016	.055	.112	.164	.184	.166	.122	.074	.037	.015	.005	.001	.000	.000	.000	.000	.000
	8	.000	.000	.000	.005	.022	.061	.114	.161	.180	.162	.120	.073	.035	.014	.004	.001	.000	.000	.000	.000
	9	.000	.000	.000	.001	.007	.027	.065	.116	.160	.177	.160	.119	.071	.034	.012	.003	.000	.000	.000	.000
	10	.000	.000	.000	.000	.002	.010	.031	.069	.117	.159	.176	.159	.117	.069	.031	.010	.002	.000	.000	.000
	11	.000	.000	.000	.000	.000	.003	.012	.034	.071	.119	.160	.177	.160	.116	.065	.027	.007	.001	.000	.000
	12	.000	.000	.000	.000	.000	.001	.004	.014	.035	.073	.120	.162	.180	.161	.114	.061	.022	.005	.000	.000
	13	.000	.000	.000	.000	.000	.000	.001	.005	.015	.037	.074	.122	.166	.184	.164	.112	.055	.016	.002	.000
	14	.000	.000	.000	.000	.000	.000	.000	.001	.005	.015	.037	.075	.124	.171	.192	.169	.109	.045	.009	.000
	15	.000	.000	.000	.000	.000	.000	.000	.000	.001	.005	.015	.036	.075	.127	.179	.202	.175	.103	.032	.002
	16	.000	.000	.000	.000	.000	.000	.000	000	000	.001	.005	.014	.035	.074	.130	.190	.218	.182	.090	.013
	17	.000	.000	000	.000	.000	.000	.000	.000	.000	.000	.001	.004	.012	.032	.072	.134	.205	.243	.190	.060
	18	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.003	.010	.028	.067	.137	.229	.285	.189
	19	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.002	.007	.021	.058	.137	.270	.377
	20	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.003	.012	.039	.122	.358

One could use an Excel utility designed to calculate such probabilities.

P[≥14 Trı	imp voters of 2	20 % of a	all Nacog	doches T	rump vot	ers is $\leq 50\%$]	= 0.0576	59
							*	
Binomial Probabilit	ies							
Exact	n	20	Input		Number	n	20	Input
Number	n(Success)	14	Input		of	n(Success-Lo)	6	Input
of	P[Success]	0.5	Input		Successes	n(Success-Hi)	14	Input
Successes	P[X=14 in 20]	0.036964	Output		Between	P[Success]	0.5	Input
					P[6<=)	(<=14 in 20]	0.958611	Output
At Least	n	20	Input					
Number	n(Success)	14	Input		Binomial	Parameters		
of	P[Success]	0.5 🖌	Input			n	20	Input
Successes	P[X>=14 in 20]	0.057659	Output			P[Success]	0.5	Input
						Mean	10	Output
At Most	n	20	Input			Variance	5	Output
Number	n(Success)	13	Input			Std Deviation	2.236068	Output
of	P[Success]	0.5	Input					
Successes	P[X<=13 in 20]	0.942341	Output					

. . = - - - /] Often, Binomial Tables are difficult to find for n > 20; however, most real polls have well beyond n = 20 respondents.

What if the primary exit poll obtained responses from 200 voters and 118 of them indicated they would vote for president Trump in November?

Now interested in P[≥ 118 Trump voters in 200 | % of all Nacogdoches Trump voters ≤ 50%] = 0.006565

	\backslash						
Binomial Probabili	ties						
Exact	n	20	Input	Number	n	20	Input
Number	n(Success)	14	Input	of	n(Success-Lo)	6	Input
of	P[Success]	0.5	Input	Successes	n(Success-Hi)	14	Input
Successes	esses P[X=14 in 20]		Output	Between	P[Success]	0.5	Input
				P[6<=)	(<=14 in 20]	0.958611	Output
At Least	n	200	Input				
Number	n(Success)	118	Input	Binomial	Parameters		
of	P[Success]	0.5	Input		n	20	Input
Successes	P[X>=118 in 200]	0.006565	Output		P[Success]	0.5	Input
					Mean	10	Output
At Most	n	20	Input		Variance	5	Output
Number	n(Success)	13	Input		Std Deviation	2.236068	Output
of	P[Success]	0.5	Input				
Successes	P[X<=13 in 20]	0.942341	Output				

Binomial Utility can also produce $100(1-\alpha)$ % exact Binomial Confidence Intervals for a population proportion.

95% Confidence intervals for the proportion of all Nacogdoches Trump voters based on the two polls would be

Binomial Confi	dence Ir	ntervals fo	r Populat	ion Propo	ortion											
Inputs																
Alpha	0.05		2.9277	This interv	his interval more approriate than interval based on Normal approximation											
Obs Successes	14															
Sample Size	20															
		E	xact Interv	al				Sowi	th n -	20 8. 1.	p voters, we could be					
		Lower		Upper												
		Limit	Estimate	Limit				95% c	confide	onfident the true % of all Nacogdoche						
		0.457211	0.7	0.881068				Trump voters is between ~45.7% & ~88.1%.								

Binomial Confi	idence Ir	ntervals fo	r Populat	ion Propo	rtion								
Inputs													
Alpha	0.05		11.7891	Normal ap	proximati	ion interva	l shoul	d be similar					
Obs Successes	118												
Sample Size	200												
		Exact Interval Lower Upper											
							But with n = 200 & 118 Trump voters, we could be						
		Limit	Estimate	Limit			95% confident the true % of all Nacogdoches						
		0.518422	0.59	0.658869					.				
								Trump vo	oters is between ~51.8% & ~65.9%.				
		Appro	Approximate Interval										
		Lower		Upper									
		Limit	Estimate	Limit									
	0.521837 0.59 0.658163												

So the potential of a Normal approximation for these confidence intervals suggests how the

P[≥ 118 Trump voters in 200 | % of all Nacogdoches Trump voters ≤ 50%]

would need to be estimated **WITHOUT** a Binomial Utility & No Binomial Table w/ n = 200

		z	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
		-0	.50000	.49601	.49202	.48803	.48405	.48006	.47608	.47210	.46812	.46414
		-0.1	.46017	.45620	.45224	.44828	.44433	.44034	.43640	.43251	.42858	.42465
Ctop 1. Find	$\Gamma_{\rm VDA}$ and $\Gamma_{\rm A}$ into $= 200*0$ $\Gamma_{\rm A} = 100$	-0.2	.42074	.41683	.41294	.40905	.40517	.40129	.39743	.39358	.38974	.38591
Step 1: Find	Expected Count = 200*0.50 =100	-0.3	.38209	.37828	.37448	.37070	.36693	.36317	.35942	.35569	.35197	.34827
Ctor 2. Find	Chandend Deviation of Country $\sqrt{200 + 0 \Gamma}$	-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.31207
Step 2: Find :	Standard Deviation of Count = $\sqrt{200 * 0.5 * 0.5}$	-0.5	.30854	.30503	.30153	.29806	.29460	.29116	.28774	.28434	.28096	.27760
	≈ 7.07107	-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.24510
	~ /.0/10/	-0.7	.24196	.23885	.23576	.23270 .20327	.22965 .20045	.22663 .19766	.22363 .19489	.22065 .19215	.21770 .18943	.21476 .18673
Sten 3. Calcu	late a Z-score for the Count:	-0.9	.21186	.20897 .18141	.20611 .17879	.17619	.20045	.17106	.16853	.16602	.16354	.16109
Step 5. caled	117.5	-0.5	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.13786
		-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.11702
	$Z = \frac{118^{2} - 100}{7.07107} \approx 2.546^{2.475}$	-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.09853
	$Z = \approx 2.546^{-100}$	-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08692	.08534	.08379	.08226
	7.07107	-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.06811
		-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.05592
Ston 1. Ilso a	Standard Normal Table to Determine	-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
Jiep 4. 03e d		-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.03673
Desir	ed Probability	-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
DCSI	_50%	-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
		-2	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
Here, nee	ed to find the value 60% of the way between	-2.1 -2.2	.01786 .01390	.01743 .01355	.01700	.01659 .01287	.01618	.01578	.01539	.01500	.01463	.01426
		-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191 .00914	.01160	.01130 00866	.01101
		-2.4	.00820	.00798	.00776	.00330	.00904	.00939	.00914	.00676	.00657	.00639
	.00554 & .00539	-2.5	.00621	.00004	.00507	.00733	.00554	.00539	.00523	.00500	.00494	.00480
	.006665 .00545	-2.6	.00466	.00453	.00440	.00427	.00413	.00402	.00391	.00379	.00368	.00357
which is	09545	-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
willer is	-90JTJ	-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
		-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
	Next shifts a subscription to water some set of	-3	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.00100
	Note this approximation is not very good	-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.00071
		-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.00050
	Approximately 17% < Actual = .006565.	-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
		-3.4 -3.5	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.00024
		-3.5	.00023	.00022	.00022 .00015	.00021 .00014	.00020 .00014	.00019 .00013	.00019	.00018 .00012	.00017 .00012	.00017
	Better with Continuity Correction	-3.7	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
	-	-3.8	.00007	.00007	.00007	.000010	.00005	.00005	.00006	.00005	.00005	.00005
	Approximately 1.5% > Actual = .006565.	-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
		-4	.00003	.00003	.00003	.00003	.00003	.00003	.00002	.00002	.00002	.00002
			-									

1.1 – Negative Z Table

However, with a suitable Normal Distribution Excel utility:

Of course, with this utility, there is no need to even calculate the Z-score:

Also, there is a Simple Regression Excel utility available:

pairs.

