

4D Clock

Frank Bedell, Jonathan Hazel, Thomas Jobe, Hacer Varol, PhD

Stephen F. Austin State University, Department of Physics, Engineering and Astronomy

Product Summary

The problem exists when you need a clock in a large space that is rarely humanly occupied. Some examples might include a garage, storage shed, or workshop. In these places you need a clock that you can easily glance at from across the room and instantly be able to read it. Sure, you can buy a large cheap digital clock that breaks within 18 months from Walmart but instead you're looking for a clock that sets itself apart from the competition as being something you, your friends and your neighbors have never seen before and really "sets off" the drab wall it will be hanging on. While the solution to the proposed problem is a unique clock, we know there are certain requirements that go with it. These requirements include the following:

- 12 Hour Clock
 - This requirement is based on the desire of the US market. Analyzing what is available on Amazon for prime delivery we can see the "bestselling" and highest rated clocks sold are in 12-hour format. This also increases the number of people who can read the clock. A surprising number of people on the market are unsure how to interpret a 24-hour clock.
- Easy to update time
 - We achieve this by embedding a GPS module into the clock. It will auto-update the clock based on location and verify that it has not "slipped" out of time every one minute
- Physical Movement w/digital like readout
 - Plays to the customers above desire for a retro-esque art-piece
- Visibility in the dark
 - Increases the hours and period that the clock can be useful to the user.
- This is achieved by typical bioluminescence from light energy stored in the vinyl pieces indicating an "on" segment

Project Justification

This project offers undergraduate students a chance to work on a structured design and manufacturing project. It provides real-world equivalent practical experience by enhancing their electrical engineering skills. Through the involvement of experienced faculty, the project will be kept on track with proper mentorship and guidance.

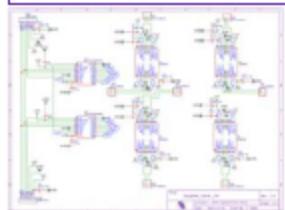


Figure 1. PCB Schematics

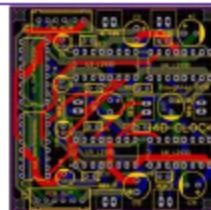


Figure 2. PCB

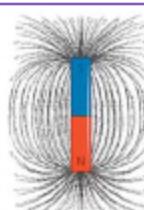


Figure 3. Magnetic Field

Engineering Characteristics

- Overall Size (mm)
- Weight (lbs)
- Cost (\$)
- Audible Volume Of Movement (dB)
- Durability
- Time Required to Adjust/Set Time (s)
- Time Keeping Accuracy (s)

Conta

Hacer Varol, PhD
Department of Physics, Engineering and Astronomy
P.O. Box 13044, SFA Station
Nacogdoches, Texas 75962
engineering@sfasu.edu
936.468.3001

Acknowledgements

Special thanks to the Physics, Engineering and Astronomy department, and the Sciences and Mathematics program for their support in this undergraduate research.

Referenc

1. Engineering Design, Dieter & Schmidt, Pearson, 5th ed. (ISBN-13: 978-0073398143)
2. Fundamentals of Electric Circuits, Seventh Edition, Alexander, Charles K. and Matthew N. O. Sadiku, McGraw-Hill, ISBN-13: 978126026409
3. Introduction to Logic Design, 3rd Edition by Alan B. Marcovitz (ISBN-13: 9780073191645)

Design Concepts

While the methods of electromechanical interaction to display the time has been decided further discussion was had to determine the final overall design concept.

Below we see 3 different design concepts proposed by the team. In Figure 4 we get to observe a retro style similar to that of a vacuum fluorescent display or led 7 segment display. In Figure 5 we see classic flip dot matrix commonly dated back to the 50s. Finally in Figure 6 we observe the all too well-known split flap style clock. Finally, we have our decision. The is the decision compiled from the first three. It is a combination of the 7-segment display but utilizing the flip dot's technology to create independent magnetic fields per "segment". Final design decision can be seen with the completed clock in Figure 10.

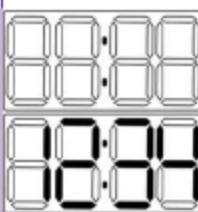


Figure 4. Seven Segment

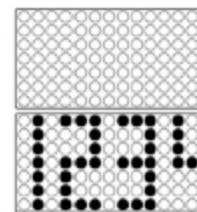


Figure 5. Flip Dot

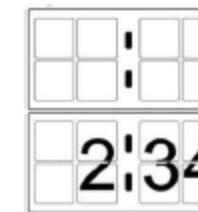


Figure 6. Split Flap

Engineering Tests - Electromagnets

We setup a single digit to act as test point to determine the best route to go in regards to electromagnet wire gauge and number of turns, as seen in Figure 7.

Result:

For the 28-gauge wire with 500 turns, the rotation of each segment was inconsistent, with the segment only being flipped successfully 93 times, some rotations being notably slower than others. This indicates the strength is not strong enough for this electromagnet to be used. The wire with 1300 turns, could rotate the segment all 100 times with a rotation. The 30-gauge wire with 2500 turns performed just as well as the 32-gauge wire with 1300 turns. However, when removing the electromagnets from the 4D Clock assembly it was discovered that the electromagnets generated a large amount of heat being dissipated from the electromagnets. This inconsistency of the 28-gauge and inefficiency of the 30-gauge electromagnets led us to choose the 32-gauge electromagnet for our design.

Figure 7. Single Test Digit

Summary and Results

The main objective was to design and assemble a, retro clock utilizing mechanical movement with electrical techniques. Thus far, we have completed development on the first iteration and evolved the iteration to determine the feasibility of creating our own electromagnets that can create a large enough magnetic field to cause a rotation of another component. It has been proven very difficult with an alarming amount of precision required. The selection of materials for production being the most critical.

We ran into many instances where the selection of materials was a poor choice, due to varying degrees of success. See Figure 8. Also, the exact gauge of enamel coated wire took a substantial amount of testing to find the real-world feasibility between; resistance, heat, current draw. See Figure 9. As well as the diameter and strength of static embedded neodymium magnets. See Figure 10.

Figure 8. Warped Resin

Figure 9. Neodymium Magnet
Figure 10. Completed First Iteration of Clock

The completed clock can be seen in Figure 10. It's approximately 21" Wx9" Hx3" D and weighs right at about 5.5 pounds.

Expected MSRP of \$199 based on current bill of materials.