

Tabletop Robotic Arm

Rylee Cooper, Jared St. John, Caleb Turner, Charles Wagner, Hector Ochoa.
Stephen F. Austin State University, Department of Physics, Engineering and Astronomy

Abstract

This team was tasked to the problem of building a robotic arm to demonstrate to incoming students and current students what engineering entails at SFA. The robot must fit on the top of a standard table and lift a 0.5-pound object. The customer specified a 5 to 6-axis robot that was able to reach about 2 feet in its range. The team began by designing a robot to fulfill the requirements of the customer. After a design was selected, the process of fine tuning the design and the prototyping of the design began. Multiple different analyses and changes took place in the making of the design, including writing a code for the robot to be able to move properly about the ranges of motion for each joint. Finally, testing of the product took place once a product was created, allowing the team to identify inadequacies and strengths throughout the design.

Design Choices

The conceptual designs generated by the team consist of an arm made up of 5 unique segments, including a base and a claw, each controlled via a stepper or servo motor depending on the type of motion desired. The electrical components are to be controlled by a Raspberry Pi as the primary processor which will be interfacing with a PCB. Additionally, a videogame controller of some kind will be used to control the arm manually. The mechanical concept design is currently based on a 4 servo-1 stepper design as indicated using decision matrices.

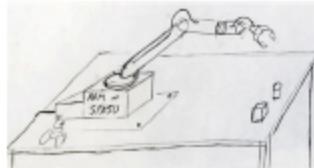


Figure 1. Conceptual Design for Robotic Arm

Design Criterion	Weight Factor	Units	4-Servo 2-Stepper			6-Servo			6 Stepper		
			Magnitude	Score	Rating	Magnitude	Score	Rating	Magnitude	Score	Rating
Material Cost	0.17	\$/lb	11.3	6	1.00	11.3	6	1.00	11.3	6	1.00
Manufacturing Cost	0.17	\$	500	10	1.7	500	10	1.7	500	10	1.7
Reliability	0.06	Experience	Good	6	0.36	Great	9	0.54	Good	6	0.36
Durability	0.06	Experience	Good	6	0.36	Good	6	0.36	Good	6	0.36
Aesthetic	0.12	Experience	Great	9	1.08	Great	9	1.08	Great	9	1.08
Reliability	0.12	Experience	High	9	1.08	Fair	6	0.72	Fair	6	0.72
Method of Control	0.18	!!	2	10	1.8	2	10	1.8	2	10	1.8
Responsiveness	0.12	ms	42	7	0.84	42	7	0.84	42	7	0.84
				8.24			8.06			7.88	

Figure 2. Decision Matrix

Contact

Hector Ochoa
Department of Physics, Engineering and Astronomy
P.O. Box 13044, SFA Station
Nacogdoches, Texas 75962
engineering@sfasu.edu
936.468.3001

Acknowledgements

Thanks to the Physics, Engineering and Astronomy department for supporting this project's design process and assembly.
Special thanks to Dr. Hector Ochoa for acting as the customer for this project and providing feedback through each step of the process.

Methods and Materials

To determine the stepper motor holding torque requirements, static analysis was applied to the arm while fully laterally extended to simulate the maximum possible loading condition. With these new parameters from the static analysis, the motor selection is still currently in progress. On the software side of things, inverse kinematics will be implemented to handle the motor control and ensure movement happens in a linear fashion, which has been simulated within a purely virtual environment (Processing IDE). Forward kinematics is where the hand or claw of the robotic arm is dependent on the base segment. While inverse kinematics will have the end or parent segment dictate the other child segments of the arm. Through different design for manufacturing and assembly methods chosen, the design was optimized and allowed for an easier manufacturing process and assembly. An example of this is shown in the figure below.

Part #	Description	Length	Cost	Qty
001	PLA	Grey	\$0.80	1
002	18MHZ-050003 Stepper Motor	Unfinished	\$16.79	1
003	Digital Servo (Hobby)	Unfinished	\$21.99	1
004	16-Channel PWM Servo Controller Module	Unfinished	\$8.99	1
005	Raspberry Pi 3 Model B 2.0 GHz	Unfinished	\$45.80	1
006	Plasticars 20" x 24" x 10"	Unfinished	\$38.99	1
007	2x2x1.5" Wood	Unfinished	\$24.75	1
008	22 Gauge Wire Solid Core Hookup Wire	Unfinished	\$13.99	1
009	Wire Strippers	Unfinished	\$1.25	1
010	Rubber	Unfinished	\$1.64	1
011	LEGO® 120pc Multicolored Duplo Wire	Unfinished	\$9.98	1
012	Adaltair 18650 1.25A DC/Stepper Motor Driver Expansion Board	Unfinished	\$8.99	1
013	AC-DC Reducing Power Supply 9V 250mA 100W	Aluminum	\$39.99	1
014	5720 Ang. 15-PT 120° Heavy Duty	Blue	\$21.99	1
015	Zener Diodes Kit	Unfinished	\$11.89	1
016	Big Servo (A8)	Unfinished	\$6.80	1
017	20A Switch SPDT 3 Pin Rocker Switch	Unfinished	\$12.99	1
018	Fuse 3 Amp	Unfinished	\$5.16	1
019	Wire Stripper Cutter STRATO	Unfinished	\$11.85	1
Total Cost				\$866.41

Figure 4. Bill of Materials

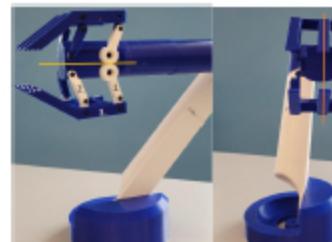


Figure 5. DFA - Simplified Claw Design

Figure 6. Statics of the Robotic Arm

Discussion

The capstone team has worked to develop a model and a functional prototype that can move a 2 cubic inch block approximately 2 feet in a 360° range of motion surrounding the arm. Additionally, the robot should be capable of being controlled by an operator or functioning autonomously as a "display model" for current or prospective students to view at their leisure. The target market for this product is almost exclusively educational, as it will not be large enough or strong enough to be used in any real industrial applications.

Figure 6. Final Assembly of Robotic Arm

Conclusions

To further progress this robot, the team will return through the summer months and finish the project, with the new power supply and servos, so the SFA Physics, Engineering, and Astronomy Department can utilize it to show incoming students and current students.

Team Members

Rylee Cooper: Engineering/Physics – Mechanical Emphasis
Jared St. John: Engineering/Physics – Electrical Emphasis
Caleb Turner: Engineering/Physics – Electrical Emphasis
Charles Wagner: Engineering/Physics – Mechanical Emphasis